Advancing OCR Accuracy in Image-to-LaTeX Conversion—A Critical and Creative Exploration

Author:

Orji Everistus Zeluwa1,Haydar Ali1,Erşan İbrahim1,Mwambe Othmar Othmar2

Affiliation:

1. Department of Computer Engineering, Girne American University, Mersin-10, Karaman 99320, Turkey

2. Computer Studies Department, Dar es Salaam Institute of Technology (DIT), Dar es Salaam P.O. Box 2958, Tanzania

Abstract

This paper comprehensively assesses the application of active learning strategies to enhance natural language processing-based optical character recognition (OCR) models for image-to-LaTeX conversion. It addresses the existing limitations of OCR models and proposes innovative practices to strengthen their accuracy. Key components of this study include the augmentation of training data with LaTeX syntax constraints, the integration of active learning strategies, and the employment of active learning feedback loops. This paper first examines the current weaknesses of OCR models with a particular focus on symbol recognition, complex equation handling, and noise moderation. These limitations serve as a framework against which the subsequent research methodologies are assessed. Augmenting the training data with LaTeX syntax constraints is a crucial strategy for improving model precision. Incorporating symbol relationships, wherein contextual information is considered during recognition, further enriches the error correction. This paper critically examines the application of active learning strategies. The active learning feedback loop leads to progressive improvements in accuracy. This article underlines the importance of uncertainty and diversity sampling in sample selection, ensuring that the dynamic learning process remains efficient and effective. Appropriate evaluation metrics and ensemble techniques are used to improve the operational learning effectiveness of the OCR model. These techniques allow the model to adapt and perform more effectively in diverse application domains, further extending its utility.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3