2D CFD Analysis of Servovalve Main Stage Internal Leakage

Author:

Tamburrano Paolo1,Plummer Andrew R.1,Elliott Phil2,Morris William2,Page Sam2,Distaso Elia3,Amirante Riccardo3,De Palma Pietro3

Affiliation:

1. University of Bath, Bath, UK

2. Moog Controls Ltd., Tewkesbury, UK

3. Polytechnic University of Bari, Bari, Italy

Abstract

Abstract This paper presents research aimed at understanding the effects of geometrical imperfections and tolerances upon the internal leakage occurring around null in the main stages of servovalves. Specifically, a two-dimensional (2D) computational fluid dynamic analysis was used to predict the direct leakage flow as a function of the overlap and clearance between the spool and bushing sleeve, as well as the roundness on the edges of the spool and bushing sleeve. Predictions of direct leakage flow against edge overlap, which have general validity, are provided in the paper for three selected values of the pressure drop. For different values of the pressure drop, analytical correlations can be applied using the data retrieved from these graphs. The analysis shows that the leakage flow is highly affected by the above-mentioned geometrical parameters. As expected, for given values of overlap and radial clearance, the greater the roundness of the edges caused by manufacturing processes or wear, the higher the leakage flow. For low leakage and hence low power loss requirement, the radii on the spool and bushing sleeve as well as the clearance must be maintained as low as possible. In addition, it is well-known that overlap between the spool and its bushing sleeve can help to reduce the leakage flow at null, and the effect of edge roundness on this reduction is now revealed.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3