Simulation of a high frequency on/off valve actuated by a piezo-ring stack for digital hydraulics

Author:

Tamburrano Paolo,De Palma Pietro,Plummer Andrew R.,Distaso Elia,Sciatti Francesco,Amirante Riccardo

Abstract

Despite being widely used in several applications, commercially available spool valves, both servovalves and proportional valves, are inefficient components because they cause high power consumption due to the large pressure drops across the metering orifices. A recent research field aims at substituting spool valves with on/off valves having high switching frequency (changing state between open and closed in a few milliseconds or less) and producing low pressure drops, in order to make the so-called digital hydraulics possible. In spite of the advantages that it could provide, digital hydraulics does not have significative industrial applications yet, because of the difficulty in manufacturing such high frequency on/off valves. Hence, this paper performs a feasibility study of an on/off poppet-type valve actuated directly by a commercially available ring stack, which is a multilayer piezo-actuator capable of generating very high actuation forces needed for this application. Modulation of the average flow can be achieved by changing the duty cycle of the pulse width modulation (PWM) signal driving the piezostack. An inertance tube could also be used to smooth flow pulsation. The simulations obtained using a detailed Simulink model show that high switching frequency and very effective flow modulation can be obtained with this valve architecture along with low pressure drops and high flow rates, thus making it potentially suitable for digital hydraulics. The disadvantages of this single stage architecture are the large dimensions of the piezo stacks, and the high current generated because of both the high capacitance of the piezo stack and the high frequency switching. However, large-scale production of these components could help to reduce the costs, and the simulations show that limiting the maximum current to 10 A still provides good regulation.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3