A Survey on Static Modeling of Miniaturized Pneumatic Artificial Muscles With New Model and Experimental Results

Author:

Ashwin K. P.1,Ghosal A.2

Affiliation:

1. Robotics and Design Lab, Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India e-mail:

2. Professor Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India e-mail:

Abstract

Pneumatic artificial muscles (PAMs) are linear pneumatic actuators consisting of a flexible bladder with a set of in-extensible fibers woven as a sheath on the outside. Upon application of pressure, the actuators contract or expand based on the angle of winding of the braid. Due to the similarity in properties of the actuators with biological muscles and the advantages thereof, these are increasingly being used in many robotic systems and mechanisms. This necessitates the development of mathematical models describing their mechanics for optimal design as well as for application in control systems. This paper presents a survey on different mathematical models described in the literature for representing the statics of PAM. Since it is observed that the validity of existing static models, based on energy balance methods, is not consistent with changes in parameters when applied to their miniaturized versions of pneumatic artificial muscles (MPAM), a new model has been proposed. The model takes into account material properties of the bladder as well as the end-effects which are prominent for MPAMs. Experiments conducted on fabricated MPAMs, of different diameters and lengths, show that the proposed model predicts the pressure-deformation characteristics of MPAMs with maximum error of less than 7%.

Publisher

ASME International

Subject

Mechanical Engineering

Reference88 articles.

1. Fluid Actuated Motor System and Stroking Device,1958

2. Artificial Muscle;Life,1960

3. Effect of Bladder Wall Thickness on Miniature Pneumatic Artificial Muscle Performance;Bioinspiration Biomimetics,2015

4. Determining the Static Characteristics of Pneumatic Muscles;Meas. Control,2016

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3