Modeling and Admittance Control of a Piezoactuated Needle Insertion Device for Safe Puncture of Spinal Membranes

Author:

Duan Yuzhou12,Ling Jie1ORCID,Zhu Yuchuan1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China

2. Nanjing University of Aeronautics and Astronautics

Abstract

Abstract Robotic-assisted lumbar puncture (LP) has been explored in recent years. The most important step in this procedure is accurately and safely puncturing the spinal membrane (dura mater) based on an automatic needle insertion device (NID). Piezoactuated NID has shown its advantages with high precision and compact structure. Soft control of the NID is important for insertion safety; however, for stick-slip piezoactuated NID, there are few studies due to the complex mechanism of stick-slip motion. Here, a modeling and admittance control method for a proposed stick-slip piezoactuated NID is proposed for safe puncture of the spinal membrane. To analytically model the NID, the compliant mechanism (CM) in the NID is reduced to a second-order system. The stick-slip friction and the spinal membrane are modeled based on the LuGre model and the Hunt–Crossley model, respectively. Based on these models, an admittance controller (AC) for the proposed NID is established to realize the precise control of the position and the safety protection against puncture errors. Simulations and preliminary experiments based on a prototype of the NID and a phantom of the spinal membrane were carried out to test the proposed modeling and control method. Results show that the proposed NID with AC has a maximum insertion error of 0.62 mm and the insertion depth decays by 80% when an unexpected force is applied. Therefore, the proposed model and control method have the potential to be used in real LP procedures by further development.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3