Data-Driven Model for the Dynamic Characteristics of O-Rings for Gas Bearing Supported Rotors

Author:

Bättig Philipp1,Schiffmann Jürg1

Affiliation:

1. Department of Mechanical Engineering, Laboratory for Applied Mechanical Design, Ecole Polytechnique Fédérale de Lausanne, CH-2002 Neuchâtel 2, Switzerland e-mail:

Abstract

The measurement results of various nitrile butadiene rubber (NBR) O-Ring sizes are presented, and reduced-order models are developed in order to predict the stiffness and damping coefficient as a function of O-Ring geometry, Shore hardness, squeeze, and excitation frequency. The results show that the curvature ratio d/D needs to be considered in the reduced-order models. The assessment of the model suggests a maximum deviation of 30% in predicted stiffness compared to the measurement data. However, taking into account the typical Shore hardness tolerance given by O-Ring manufacturers and other measurement uncertainties, the proposed model enables the prediction of various O-Rings with a good accuracy in the frequency range of 1.5–3.75 kHz, which corresponds to typical gas bearing supported rotor applications.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the effects of three surface imperfections on the performance of O-ring seals based on the finite element method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-24

2. Multidisciplinary Design Methodology for Micro-Gas-Turbines—Part II: System Analysis and Optimization;Journal of Engineering for Gas Turbines and Power;2024-04-12

3. Vibration-induced cavitation in cylinder liners caused by piston slaps;International Journal of Mechanical Sciences;2024-04

4. On the Dynamic Characterization of Elastomeric O-Rings;Mechanisms and Machine Science;2024

5. AI and Expert Insights for Sustainable Energy Future;Energies;2023-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3