Threshold Speed of Instability of a Herringbone-Grooved Rigid Rotor With a Bearing Bush Flexibly Supported by Straight Spring Wires

Author:

Somaya Kei1,Okubo Koki1,Miyatake Masaaki1,Yoshimoto Shigeka1

Affiliation:

1. Tokyo University of Science, Tokyo, Japan

Abstract

In recent years, small-size aerodynamic bearings for turbomachines such as blowers and compressors have attracted considerable attention for increasing rotational speed. These kinds of bearings require excellent stability at high speeds and durability in a high-temperature environment. Foil bearings are one of the most suitable candidates that can satisfy these requirements but their structure is very complicated, and it is difficult to control their manufacturing accuracy. It is well known that flexibly supported herringbone-grooved aerodynamic journal bearings have excellent stability at high speeds and they are relatively easy to manufacture compared with foil bearings. Moreover, their dynamic characteristics can be easily solved numerically. In this paper, a flexibly supported herringbone-grooved aerodynamic journal bearing using straight spring wires made of stainless steel is proposed to provide a simple and reliable support system for a bearing bush. Six straight spring wires were assembled into a hexagonal shape into which the bearing bush was inserted. The threshold speed of instability of the proposed aerodynamic bearing was investigated numerically and experimentally. For this investigation, the nonlinear orbit method was adopted in numerical calculations. This investigation found that straight spring wires could steadily support the bearing bush and provide a simple and reliable support system for the bearing bush and that a 6-mm-diameter rigid rotor with a mass of 4.8 g supported by the proposed aerodynamic journal bearings could stably rotate at speeds of more than 0.7 million rpm.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3