Thermal Property Enhancement of Liquid Metal Used As Thermal Interface Material by Mixing Magnetic Particles

Author:

Ma Xianfeng1,Li Gen1,Zheng Xuelin1,Wang Xiaozhong1,Wang Zhongcheng1,Ji Yulong2

Affiliation:

1. Shanghai Maritime University, Shanghai, China

2. Dalian Maritime University, Dalian, China

Abstract

Abstract The usage of low melting temperature alloys (LMAs) as thermal interface materials (TIMs) has attracted more and more attention for their high thermal conductivity. However, the wettability between liquid metal and ordinary metal surface was poor, which results in high thermal interface resistance. The thermal and physical properties of LMAs can be modified by adding nano or micro particles. In this study, the room temperature liquid metal (gallium, indium and tin eutectic) was used as TIM and its properties were modified by mixing magnetic nickel particles. Further, the effects of magnetic field application on the thermal performance of modified LMAs were evaluated by steady state method with specially designed sample holder. Results showed that the thermal conductivity of liquid metal mixed with nickel particle increased from 27.33 W/(m · K) to 33.33 W/(m · K) with the application of magnetic field.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3