Mask Video Projection-Based Stereolithography With Continuous Resin Flow

Author:

Li Xiangjia1,Mao Huachao1,Pan Yayue2,Chen Yong3

Affiliation:

1. Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089 e-mail:

2. Assistant Professor Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 e-mail:

3. Professor Daniel J. Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 e-mail:

Abstract

The mask image projection-based stereolithography (MIP-SL) is a low-cost and high-resolution additive manufacturing (AM) process. However, the slow speed of part separation and resin refilling is the primary bottleneck that limits the fabrication speed of the MIP-SL process. In addition, the stair-stepping effect due to the layer-based fabrication process limits the surface quality of built parts. To address the critical issues in the MIP-SL process related to resin refilling and layer-based fabrication, we present a mask video projection-based stereolithography (MVP-SL) process with continuous resin flow and light exposure. The newly developed AM process enables the continuous fabrication of three-dimensional (3D) objects with ultra-high fabrication speed. In the paper, the system design to achieve mask video projection and the process settings to achieve ultrafast fabrication speed are presented. The relationship between process parameters and the surface quality of the built parts is discussed. Test results illustrate that the MVP-SL process with a continuous resin flow can build three-dimensional objects within minutes, and the surface quality of the fabricated objects is significantly improved.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3