Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems

Author:

Murray Alexander V.1,Ireland Peter T.1,Romero Eduardo2

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

2. Turbine Systems, Rolls-Royce plc., Bristol BS34 7QE, UK

Abstract

Abstract Further improvements in gas turbine efficiency can be sought through more advanced cooling systems—such as the double-wall, effusion system—which provide high cooling effectiveness with low coolant utilization. The double-wall system, as described here, comprises two walls: one with a regular array of impingement holes and the other with a closely packed, regular array of film holes (characteristic of effusion systems). These walls are mechanically and thermally connected via a bank of pedestals which increase coolant wetted area and turbulent flow features. However, a lack of data exists in the open literature on these systems. This study presents a novel experimental heat transfer facility designed with the intent of investigating flat plate versions of such double-wall geometries. Key features of the facility are presented including the use of recirculation to increase the mainstream-to-coolant temperature ratio and the use of infrared thermography to obtain thermal measurements. Some rig commissioning characteristics are also provided which demonstrate well-conditioned, uniform flow. Both coolant and mainstream Reynolds numbers are matched to engine conditions, with the Biot number within around 15% of engine conditions. The facility is used to assess the cooling performance of four double-wall effusion geometries which incorporate various geometrical features. Both overall effectiveness and film effectiveness measurements are presented at a range of coolant mass flows with conclusions drawn as to preferable features from a cooling perspective. The results from a fully conjugate computational fluid dynamics (CFD) model of the facility are presented which utilized boundary conditions obtained during experimental runs. Additionally, a computationally efficient decoupled conjugate method developed previously by the authors was adapted to assess the experimental geometries with the results comparing favorably.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3