Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries

Author:

Murray Alexander V.1,Ireland Peter T.1,Romero Eduardo2

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK e-mail:

2. Turbine Systems, Rolls-Royce plc., Bristol BS34 7QE, UK e-mail:

Abstract

The continuous drive for ever higher turbine entry temperatures is leading to considerable interest in high performance cooling systems which offer high cooling effectiveness with low coolant utilization. The double-wall system is an optimized amalgamation of more conventional cooling methods including impingement cooling, pedestals, and film cooling holes in closely packed arrays characteristic of effusion cooling. The system comprises two walls, one with impingement holes, and the other with film holes. These are mechanically connected via pedestals allowing conduction between the walls while increasing coolant-wetted area and turbulent flow. However, in the open literature, experimental data on such systems are sparse. This study presents a new experimental heat transfer facility designed for investigating double-wall systems. Key features of the facility are discussed, including the use of infrared thermography to obtain overall cooling effectiveness measurements. The facility is designed to achieve Reynolds and Biot (to within 10%) number similarity to those seen at engine conditions. The facility is used to obtain overall cooling effectiveness measurements for a circular pedestal, double-wall test piece at three coolant mass-flows. A conjugate computational fluid dynamics (CFD) model of the facility was developed providing insight into the internal flow features. Additionally, a computationally efficient, decoupled conjugate method developed by the authors for analyzing double-wall systems is run at the experimental conditions. The results of the simulations are encouraging, particularly given how computationally efficient the method is, with area-weighted, averaged overall effectiveness within a small margin of those obtained from the experimental facility.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3