Affiliation:
1. Department of Mechanical Engineering, Yonsei University, Seoul, 120-749 Korea
Abstract
The present study is conducted to investigate flow and heat/mass transfer characteristics in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system, two perforated plates are placed in parallel and staggered arrangements with a gap distance of two times of the hole diameter, and initial crossflow passes between the plates. Both the injection and effusion hole diameters are 10 mm, and the Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and six times of the hole diameter, respectively. To investigate the effect of crossflow, the flow rate of crossflow is changed from 0.5 to 2 times of that of the impinging jet, and the results of impingement/effusion cooling with crossflow are compared with those of the crossflow in the channel and of an array of impingement jets and the effusion cooling system. A naphthalene sublimation method is used to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. The flow patterns are calculated numerically using a commercial package. With the initial crossflow, the flow and heat/mass transfer characteristics are changed significantly from the results without the crossflow. Jet flows ejected from the injection plate are deflected by the crossflow, so that the stagnation points of the impinging jets move downstream. The heat/mass transfer rates on the effusion (target) plate decrease as the velocity of crossflow increases, since the crossflow induces the locally low transfer regions formed at the mid-way between the effusion holes. However, the impingement/effusion cooling with crossflow presents higher heat/mass transfer rates than the array jet impingement cooling with the same initial crossflow.
Reference19 articles.
1. Hollwarth, B. R., and Dagan, L., 1980, “Arrays of Impinging Jets with Spent Fluid Removal through Vent Holes on the Target Surface Part 1: Average Heat Transfer,” ASME J. Eng. Power, 102, pp. 994–999.
2. Hollwarth, B. R., and Lehmann, G., and Rosiczkowski, J., 1983, “Arrays of Impinging Jets with Spent Fluid Removal through Vent Holes on the Target Surface Part 2: Local Heat Transfer,” J. Eng. Power, 105, pp. 393–402.
3. Cho, H. H., and Goldstein, R. J., 1996, “Effect of Hole Arrangements on Impingement/Effusion Cooling,” Proc. 3rd KSME-JSME Thermal Engineering Conference, pp. 71–76.
4. Cho, H. H., and Rhee, D. H., 2001, “Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling System,” ASME J. Turbomach., 123, pp. 601–608.
5. Cho, H. H., Choi, J. H., and Rhee, D. H. 2001, “The Effects of Hole Arrangements on Heat/Mass Transfer of Impingement/Effusion Cooling System,” Proc. ExHFT-5, pp. 975–980.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献