The Role of Kelvin–Helmholtz Instabilities on Shaped Charge Jet Interaction With Reactive Armor Plates

Author:

Helte Andreas1,Lidén Ewa1

Affiliation:

1. Defence & Security, Systems and Technology Division, FOI, Swedish Defence Research Agency, Grindsjön, SE-147 25 Tumba, Sweden

Abstract

Reactive armor panels have been used for many years as very efficient add-on armor against shaped charge warheads. The main features of the defeat mechanisms of the armor are therefore well known. The origin of the irregular disturbances on the shaped charge jet, which leads to the severe fragmentation and scattering of the jet, is however not described in literature. As this scattering of the jet provides the main protection mechanism of the armor, it is of interest to understand the details of the interaction and the origin of the disturbances. Some experimental observations have been made showing that the backward moving plate often displaces the jet relatively smoothly while it is the interaction with the forward moving plate that causes the disturbances that leads to fragmentation and scattering of the jet. In this work, a mechanism for the interaction is proposed based on the theory of Kelvin–Helmholtz instabilities, which explains the origin of the disturbances on the jet due to the interaction with the forward moving plate. Numerical simulations have been performed to show the difference in the mechanisms of backward and forward moving plates when interacting with the jet. The impact angle of the plate seems to be the dominant parameter for the onset of instabilities. A parametric study has also been performed on how different interaction and material parameters influence the development of instabilities of the interface between the jet and the armor plate. The parametric study shows that low-strength jets promote development of instabilities, a tendency that is amplified by frictional forces between the materials. The influence of the plate strength is more complex due to the influence of the structural stability on the contact forces. The effect of friction and melting of the metals in the boundary layer to the development of the instabilities is discussed. A microscopic study of the edge of the penetration channel has been made, which shows that the materials have been melted during the interaction between the plate and the jet.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference8 articles.

1. Interaction of Shaped-Charge Jets With Armor;Mayseless

2. Explosive Reactive Armour;Held

3. Mechanics of Explosive Welding;El-Sobky

4. Hydrodynamic Instabilities in Solid Media—From the Object of Investigation to the Investigation Tool;Mikhailov;Phys. Mesomech.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3