A Numerical Study on the Ballistic Performance of Projectiles Formed by Shaped Charge

Author:

Göçmen Yağmur1,Erdogan Can1,Yalçinkaya Tuncay1

Affiliation:

1. Middle East Technical University Department of Aerospace Engineering, , Ankara 06800 , Turkey

Abstract

Abstract In this work, a numerical analysis of shaped charge impact process is conducted to investigate the jet formation process and its penetration performance on metal targets. Numerical results are compared with experimental data from published literature for liners made up of copper and iron. Conical and bowl-shaped liner geometries are simulated with various configurations to observe their effects on projectile shape and penetration capability using the finite element (FE) method. The exact shape of the explosively formed projectile at the onset of impact is modeled as a rigid 3D body to simulate the penetration process. #45 and Armox 500T steels are used as the target materials, and the material behavior and failure mechanisms are modeled using the Johnson–Cook (JC) plasticity and damage models. In addition to the FE method, smoothed particle hydrodynamics (SPH) is utilized as well to evaluate its capacity in predicting the failure behavior of the metal targets. It is concluded that the FE method outperforms the SPH method at predicting failure modes, while SPH can still be used to predict residual velocity and hole diameters. Armox 500T demonstrates a higher impact resistance compared to #45 steel. Liner geometry is found to significantly affect penetration performance. Sharper and thinner projectiles formed from liners with small cone angles are shown to be highly efficient in penetrating through armor steel targets.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3