Assessment of the Environmental Effects on the Performance of FRP Repaired Steel Pipes Subjected to Internal Pressure

Author:

Esmaeel Ramadan A.1,Khan Mohamed A.1,Taheri Farid1

Affiliation:

1. Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street,Halifax, NS, B3J 1Z1, Canada

Abstract

The use of composite materials for repair and rehabilitation of corroded steel pipes has been increasingly growing in the oil and gas industry. However, there exists a noticeable gap in the literature on the long term performance of composite repaired pipes, especially those subjected to large internal pressure magnitudes. This work is an attempt toward filing the gap by gaining a better understanding of the effects of environmental conditions on the long term performance of composite repaired pipes subjected to large internal pressures. Finite element method (FEM) is used to simulate typical composite warp-repaired gouged steel pipes, conditioned in various environments and subsequently subjected to internal pressure. The influence of the resulting degradation in composite’s mechanical properties on the performance of the system was evaluated. To validate the results, an experimental program was designed and carried out. Repaired specimens were conditioned in an environmental chamber under certain thermal and moisture conditions; then, the specimens were tested to failure subject to internal pressure. Good correlation was obtained after fine tuning of FEM model’s material data through the use of the experimentally obtained data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bond degradation at environmentally exposed FRP-strengthened steel elements: State of the art;Composites Part C: Open Access;2023-10

2. CFRP-patch repair characterization for compressive capacity recovery of perforated steel tubular members;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2023-07-18

3. Effects of Graphene Nanoplatelets–Reinforced Putty on the Burst Performances of Repaired Steel Pipes;Journal of Pipeline Systems Engineering and Practice;2023-05

4. CFRP repair effectiveness on compressed steel tubular members with circular cutout;Latin American Journal of Solids and Structures;2023

5. Failure analysis of composite repaired pipes subjected to internal pressure;Journal of Reinforced Plastics and Composites;2022-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3