Development of a Carbon-Fiber Composite Repair System for Offshore Risers

Author:

Alexander Chris1,Cercone Larry2,Lockwood James2

Affiliation:

1. Stress Engineering Services, Inc., Houston, TX

2. Comptek Structural Composites, Boulder, CO

Abstract

Composite systems are a generally-accepted method for repairing corroded and mechanically-damaged onshore pipelines. The pipeline industry has arrived at this point after more than 15 years of research and investigation. Because the primary method of loading for onshore pipelines is in the circumferential direction due to internal pressure, most composite systems have been designed and developed to provide hoop strength reinforcement. On the other hand, offshore pipes (especially risers), unlike onshore pipelines, can experience significant tension and bending loads. As a result, there is a need to evaluate the current state of the art in terms of assessing the use of composite materials in repairing offshore pipelines and risers. The significance of the body of work presented herein is that this study is the first comprehensive evaluation of a composite repair system designed for the repair of offshore risers using a strain-based design method coupled with full-scale prototype testing. This paper presents findings conducted as part of a joint industry effort involving the Minerals Management Service, the Offshore Technology Research Center at Texas A&M University, Stress Engineering Services, Inc., and several composite repair manufacturers to assess the state of the art using finite element methods and full-scale testing methods. Representative loads for offshore risers were used in the test program that integrated internal pressure, tension, and bending loads. This program is the first of its kind and likely to contribute significantly to the future of offshore riser repairs. The end result of this study was the development of a carbon-fiber repair system that can be easily deployed to provide significant reinforcement for repairing risers. It is anticipated that the findings of this program will foster future investigations involving operators by integrating their insights regarding the need for composite repair based on emerging technology.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3