Modeling and Reinforcement Learning Control of an Autonomous Vehicle to Get Unstuck From a Ditch

Author:

Manring Levi H.1,Mann Brian P.1

Affiliation:

1. Duke University Pratt School of Engineering, , Durham, NC 27708

Abstract

AbstractAutonomous vehicle control approaches are rapidly being developed for everyday street-driving scenarios. This article considers autonomous vehicle control in a less common, albeit important, situation “a vehicle stuck in a ditch.” In this scenario, a solution is typically obtained by either using a tow-truck or by humans rocking the vehicle to build momentum and push the vehicle out. However, it would be much more safe and convenient if a vehicle was able to exit the ditch autonomously without human intervention. In exploration of this idea, this article derives the governing equations for a vehicle moving along an arbitrary ditch profile with torques applied to front and rear wheels and the consideration of four regions of wheel-slip. A reward function was designed to minimize wheel-slip, and the model was used to train control agents using Probabilistic Inference for Learning COntrol (PILCO) and deep deterministic policy gradient (DDPG) reinforcement learning (RL) algorithms. Both rear-wheel-drive (RWD) and all-wheel-drive (AWD) results were compared, showing the capability of the agents to achieve escape from a ditch while minimizing wheel-slip for several ditch profiles. The policy results from applying RL to this problem intuitively increased the momentum of the vehicle and applied “braking” to the wheels when slip was detected so as to achieve a safe exit from the ditch. The conclusions show a pathway to apply aspects of this article to specific vehicles.

Funder

Army Research Office

Publisher

ASME International

Subject

General Medicine

Reference33 articles.

1. A Survey of Deep Learning Techniques for Autonomous Driving;Grigorescu;J. Field Rob.,2020

2. The Mountain Car Problem

3. Learning Adversarial Attack Policies Through Multi-objective Reinforcement Learning;García;Eng. Appl. Artif. Intell.,2020

4. A Multi-objective Deep Reinforcement Learning Framework;Nguyen;Eng. Appl. Artif. Intell.,2020

5. Robust Deep Reinforcement Learning With Adversarial Attacks;Pattanaik,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3