Screening of Lost Circulation Materials for Geothermal Applications: Experimental Study at High Temperature

Author:

Vivas Cesar1,Salehi Saeed1

Affiliation:

1. Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, Norman, OK 73019-1003

Abstract

Abstract This study presents a laboratory experimental research to determine the characteristics of lost circulation materials (LCMs) capable of addressing thermal degradation, providing bridging and sealing in geothermal conditions. Eleven different materials were tested: Walnut Fine, Walnut Medium, Sawdust, Altavert, Graphite Blend, Bentonite Chips, Micronized Cellulose (MICRO-C), Magma Fiber Fine, diatomaceous earth/amorphous silica powder (DEASP), Cotton Seed Hulls, and a Calcium Carbonate Blend. The filtration and sealing pressure of the LCMs were measured with HPHT equipment up to 149 °C (300 °F). Besides, the particle size distribution (PSD) of fine granular materials was measured. The results show that the performance of some LCM materials commonly used in geothermal operations is affected by high temperature. Characteristics such as shape and size made some materials more prone to thermal degradation. Also, it was found that the PSD of LCMs is a key factor in the effectiveness of bridging and sealing fractures. The results suggest that granular materials with a wide particle size distribution PSD are suitable for geothermal applications.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3