The Role of Protein Loss and Denaturation in Determining Outcomes of Heating, Cryotherapy, and Irreversible Electroporation on Cardiomyocytes

Author:

Liu Feng1,Roy Priyatanu1,Shao Qi23,Jiang Chunlan1,Choi Jeunghwan45,Chung Connie1,Mehra Dushyant1,Bischof John C.267

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 e-mail:

2. Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455;

3. Institute for Engineering in Medicine, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 e-mail:

4. Department of Mechanical Engineering, University of Minnesota, Slay Hall, Library Drive, Greenville, NC 27858;

5. Department of Engineering, East Carolina University, Slay Hall, Library Drive, Greenville, NC 27858 e-mail:

6. Institute for Engineering in Medicine, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455;

7. Department of Biomedical Engineering, University of Minnesota, Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455 e-mail:

Abstract

Atrial fibrillation (AF) currently affects millions of people in the U.S. alone. Focal therapy is an increasingly attractive treatment for AF that avoids the debilitating effects of drugs for disease control. Perhaps the most widely used focal therapy for AF is heat-based radiofrequency (heating), although cryotherapy (cryo) is rapidly replacing it due to a reduction in side effects and positive clinical outcomes. A third focal therapy, irreversible electroporation (IRE), is also being considered in some settings. This study was designed to help guide treatment thresholds and compare mechanism of action across heating, cryo, and IRE. Testing was undertaken on HL-1 cells, a well-established cardiomyocyte cell line, to assess injury thresholds for each treatment method. Cell viability, as assessed by Hoechst and propidium iodide (PI) staining, was found to be minimal after exposure to temperatures ≤−40 °C (cryo), ≥60 °C (heating), and when field strengths ≥1500 V/cm (IRE) were used. Viability was then correlated to protein denaturation fraction (PDF) as assessed by Fourier transform infrared (FTIR) spectroscopy, and protein loss fraction (PLF) as assessed by bicinchoninic acid (BCA) assay after the three treatments. These protein changes were assessed both in the supernatant and the pellet of cell suspensions post-treatment. We found that dramatic viability loss (≥50%) correlated strongly with ≥12% protein change (PLF, PDF or a combination of the two) in every focal treatment. These studies help in defining both cellular thresholds and protein-based mechanisms of action that can be used to improve focal therapy application for AF.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3