Calibration of a three-state cell death model for cardiomyocytes and its application in radiofrequency ablation

Author:

Petras Argyrios,Leoni Massimiliano,Guerra Jose M,Gerardo-Giorda Luca

Abstract

Abstract Objective. Thermal cellular injury follows complex dynamics and subcellular processes can heal the inflicted damage if insufficient heat is administered during the procedure. This work aims to the identification of irreversible cardiac tissue damage for predicting the success of thermal treatments. Approach. Several approaches exist in the literature, but they are unable to capture the healing process and the variable energy absorption rate that several cells display. Moreover, none of the existing models is calibrated for cardiomyocytes. We consider a three-state cell death model capable of capturing the reversible damage of a cell, we modify it to include a variable energy absorption rate and we calibrate it for cardiac myocytes. Main results. We show how the thermal damage predicted by the model response is in accordance with available data in the literature on myocytes for different temperature distributions. When coupled with a computational model of radiofrequency catheter ablation, the model predicts lesions in agreement with experimental measurements. We also present additional experiments (repeated ablations and catheter movement) to further illustrate the potential of the model. Significance. We calibrated a three-state cell death model to provide physiological results for cardiac myocytes. The model can be coupled with ablation models and reliably predict lesion sizes comparable to experimental measurements. Such approach is robust for repeated ablations and dynamic catheter-cardiac wall interaction, and allows for tissue remodelling in the predicted damaged area, leading to more accurate in-silico predictions of ablation outcomes.

Funder

State of Upper Austria

Austrian Science Fund

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Catheter Orientation on Cardiac Radiofrequency Ablation;Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3