Utilization of a Two-Beam Cantilever Array for Enhanced Atomic Force Microscopy Sensitivity

Author:

Jackson Samuel1,Gutschmidt Stefanie2

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, Ilam 8041, Christchurch, New Zealand e-mail:

2. Department of Mechanical Engineering, University of Canterbury, Ilam 8041, Christchurch, New Zealand

Abstract

An array of cantilevers offers an alternative approach to standard single beam measurement in the context of atomic force microscopy (AFM). In comparison to a single beam, a multi-degrees-of-freedom system offers a greater level of flexibility with regard to parameter selection and tuning. By utilizing changes in the system eigenmodes as a feedback signal, it is possible to enhance the sensitivity of AFM to changes in sample topography above what is achievable with standard single beam techniques. In this paper, we analyze a two-beam array operated in FM-AFM mode. The array consists of a single active cantilever that is excited with a 90 deg phase-shifted signal and interacts with the sample surface. The active beam is mechanically coupled to a passive beam, which acts to vary the response between synchronized and unsynchronized behavior. We use a recently developed mathematical model of the coupled cantilever array subjected to nonlinear tip forces to simulate the response of the described system with different levels of coupling. We show that the sensitivity of the frequency feedback signal can be increased significantly in comparison to the frequency feedback from a single beam. This is a novel application for an AFM array that is not present in the literature.

Publisher

ASME International

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3