Robust Design and Evaluation of a Novel Modular Origami-Enabled Mobile Robot (OSCAR)

Author:

Angatkina Oyuna12,Alleyne Andrew G.12,Wissa Aimy3

Affiliation:

1. University of Illinois Department of Mechanical, Science and Engineering, , , Urbana, IL 61801

2. Urbana-Champaign Department of Mechanical, Science and Engineering, , , Urbana, IL 61801

3. Princeton University Department of Mechanical and, Aerospace Engineering, , Princeton, NJ 08540

Abstract

Abstract This article presents critical design modifications for an Origami-enabled Soft Crawling Autonomous Robot (OSCAR). OSCAR’s upgraded design mitigates motion uncertainties, which often plague soft robots. More specifically, we present a design that mitigates motion uncertainties caused by the feet interaction with the ground and uncertainties in the assembly procedures and actuators’ control. The new design has a robust and repeatable locomotion cycle that reaches more than 95% of its ideal, analytically predicted locomotion cycle. OSCAR’s performance is experimentally validated using two case studies, namely, navigation in a 2D environment with static obstacles and coupled locomotion of two docked OSCAR segments. Results from the first case study demonstrate OSCAR’s accurate and robust path following performance across multiple trials and experiments. Results from the second case study show the successful and repeatable earthworm-inspired locomotion of two docked OSCAR segments. The second case study demonstrates OSCAR’s modular design. OSCAR’s modified design, along with the reduced motion uncertainty, allows for operation where individual segments can operate alone or while docked to other segments. The repeatable and modular OSCAR design presented in this study expands the operational envelope for origami-enabled robots and allows their deployment in various applications.

Publisher

ASME International

Subject

Mechanical Engineering

Reference38 articles.

1. Design, Fabrication and Control of Soft Robots;Rus;Nature,2015

2. Soft Robotics: A Bioinspired Evolution in Robotics;Kim;Trends Biotechnol.,2013

3. A Resilient, Untethered Soft Robot;Tolley;Soft Rob.,2014

4. A Soft Robot That Navigates Its Environment Through Growth;Hawkes;Sci. Rob.,2017

5. Obstacle-Aided Navigation of a Soft Growing Robot;Greer,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3