Starved Elastohydrodynamic Lubrication With Reflow in Elliptical Contacts

Author:

Nogi Takashi1,Shiomi Hiroshi2,Matsuoka Noriko1

Affiliation:

1. Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-higashimachi, Chofu, Tokyo 182-8522, Japan e-mail:

2. Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan e-mail:

Abstract

Under repeated overrollings, the elastohydrodynamic lubrication (EHL) film thickness can be much less than the fully flooded value due to the ejection of the lubricant from the track. The ejection of the lubricant is caused by the pressure flow in the inlet, and under conditions of negligible reflow, the reduction rate is predicted by the numerical analysis with a uniform inlet film thickness. However, the degree of starvation is determined by the balance of the ejection and reflow. In the previous papers for circular contacts, the reflow is taken into account using a nonuniform inlet film thickness obtained based on the Coyne–Elrod boundary condition. In this paper, the model for circular contacts is extended to elliptical contacts, which are of more practical importance in rolling bearings. The model is verified for the inlet distance and the film thickness using a roller on disk optical test device. Numerical results are fitted to an inlet distance formula, which is a function of the initial film thickness, the fully flooded central film thickness, the capillary number, and the ellipticity ratio. The inlet distance formula can be applied to the Hamrock–Dowson formulas for the starved film thickness.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3