Affiliation:
1. Lewis Research Center, Cleveland, Ohio
2. University of Leeds, Leeds, England
Abstract
Utilizing the theory and numerical procedure developed by the authors in an earlier publication the influence of lubricant starvation on minimum film thickness was investigated. This study of lubricant starvation was performed simply by moving the inlet boundary closer to the contact center. From the results it was found that for the range of conditions considered the value of dimensionless inlet distance at the boundary between fully flooded and starved conditions (m*) can be expressed simply as m*=1+3.06Rxb2Hc,F0.58 or m*=1+3.34Rxb2Hmin,F0.56 that is, for a dimensionless inlet distance (m) less than m*, starvation occurs, and for m ≥ m*, a fully flooded condition exists. Furthermore, it has been possible to express the central and minimum film thickness for a starved condition as Hc,S=Hc,Fm−1m*−10.29Hmin,S=Hmin,Fm−1m*−10.25 Contour plots of the pressure and film thickness in and around the contact are shown for the fully flooded and starved lubricant condition. From these contour plots it was observed that the pressure spike becomes suppressed and the film thickness decreases substantially as starvation increases.
Cited by
214 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献