Orbit-Model Force Coefficients for Fluid Film Bearings: A Step Beyond Linearization

Author:

San Andrés Luis1,Jeung Sung-Hwa2

Affiliation:

1. Mast-Childs Chair Professor Fellow ASME Mechanical Engineering Department, Texas A&M University, College Station, TX 77843 e-mail:

2. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843 e-mail:

Abstract

High-performance turbomachinery demands high shaft speeds, increased rotor flexibility, tighter clearances in the flow passages, advanced materials, and increased tolerance to imbalances. Operation at high speeds induces severe dynamic loading with large amplitude shaft motions at the bearing supports. Typical rotordynamic models rely on linearized force coefficients (stiffness K, damping C, and inertia M) to model the reaction forces from fluid film bearings and seal elements. These true linear force coefficients are derived from infinitesimally small amplitude motions about an equilibrium position. Often, however, a rotor–bearing system does not reach an equilibrium position and displaces with motions amounting to a sizable portion of the film clearance; the most notable example being a squeeze film damper (SFD). Clearly, linearized force coefficients cannot be used in situations exceeding its basic formulation. Conversely, the current speed of computing permits to evaluate fluid film element reaction forces in real time for ready numerical integration of the transient response of complex rotor–bearing systems. This approach albeit fast does not help to gauge the importance of individual effects on system response. Presently, an orbit analysis method estimates force coefficients from numerical simulations of specified journal motions and predicted fluid film reaction forces. For identical operating conditions in static eccentricity and whirl amplitude and frequency as those in measurements, the computational physics model calculates instantaneous damper reaction forces during one full period of motion and performs a Fourier analysis to characterize the fundamental components of the dynamic forces. The procedure is repeated over a range of frequencies to accumulate sets of forces and displacements building mechanical transfer functions from which force coefficients are identified. These coefficients thus represent best fits to the motion over a frequency range and dissipate the same mechanical energy as the nonlinear mechanical element. More accurate than the true linearized coefficients, force coefficients from the orbit analysis correlate best with SFD test data, in particular for large amplitude motions, statically off-centered. The comparisons also reveal the fallacy in representing nonlinear systems as simple K–C–M models impervious to the kinematics of motion.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference21 articles.

1. Zeidan, F., San Andrés, L., and Vance, J., 1996, “Design and Application of Squeeze Film Dampers in Rotating Machinery,” 25th Turbomachinery Symposium, Texas A&M University, Houston, TX, Sept. 16–19, pp. 169–188.

2. Identification of Dynamic Bearing Parameters: A Review;Shock Vib. Dig.,2004

3. Nonlinear Effects in a Plain Journal Bearing: Part 1—Analytical Study;ASME J. Tribol.,1991

4. Dynamic Analysis of Squeeze Film Damper Supported Rotors Using Equivalent Linearization;ASME J. Eng. Gas Turbines Power,1994

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3