Dynamic Forced Performance of an O-Rings Sealed Squeeze Film Damper Lubricated With a Low Supply Pressure and a Simple Method to Quantify Air Ingestion

Author:

Rodríguez Bryan1,San Andrés Luis2

Affiliation:

1. L.A. Turbine , Valencia, CA 91355

2. Fellow ASME J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University , College Station, TX 77843

Abstract

Abstract Contemporary squeeze film dampers (SFDs) in air-breathing engines are short in length to limit weight and part count and lubricated with a low feed pressure to reduce oil storage and pumping power. In SFDs, O-rings (ORs) restrict side leakage and increase the viscous damping while a adding a modest centering stiffness. Continuing a long-term project characterizing SFDs for aircraft engines and extending the original work (San Andrés and Rodríguez, 2021, “On the Experimental Dynamic Force Performance of a Squeeze Film Damper Supplied Through a Check Valve and Sealed With O-Rings,” ASME J. Eng. Gas Turb. Power, 143(11), p. 111011) the paper details measurements of the forced performance of an OR sealed damper (OR-SFD) with diameter D = 127 mm, land length L = 0.2 D, and radial clearance c = 0.0022 D. Lubricant ISO VG 2 supplied at 0.69 bar(g) fills an upstream oil plenum and flows into the middle of the land through a single orifice configured with a check valve. Measurements of applied single-frequency dynamic loads, along with the ensuing damper displacements and accelerations serve to identify the parameters of the test structure, ORs, and SFD. The tests encompass centered whirl motions with amplitude r = 0.05–0.45c, and a range of whirl frequencies, ω = 10–130 Hz. Note the squeeze velocity vs =  rω reaches 102 mm/s. The ORs force coefficients are nearly invariant with frequency but do depend on the orbit amplitude. The ORs' stiffness (KOR) decreases by 75% as the motion amplitude increases, r → 0.45c, likely due to the large elastic deformations and slow recovery of the ORs material. For small amplitude motions (r/c = 0.05 and 0.10), the ORs damping coefficient (COR) is ∼10% of the overall coefficient for the lubricated system (CL), while for r/c > 0.25, COR ∼ 0.03CL. For small amplitudes of whirl (r ≤ 0.25c), the SFD experimental viscous damping (CSFD) and added mass (MSFD) coefficients, identified over a shorter frequency range (vs<30 mm/s) equal theoretical magnitudes for a fully sealed damper. As the orbit size grows to r = 0.45c MSFD drops nearly by 75% and CSFD decreases by ∼40% due to the onset of both lubricant cavitation and air ingestion occurring for squeeze velocities vs ≥ 24.5 mm/s, as also seen in the recorded dynamic pressures and video recordings of a bubbly mixture leaving the damper. A comprehensive flow model predicts CSFD and MSFD about 8% and 12% larger than the experimentally identified coefficients. A novel approach enables the estimation of the gas volume fraction (GVF) generated in the damper which rapidly increases as vs grows. The simple procedure draws into a deflated balloon the material contents in the squeeze film, weighs the sample, and identifies its volume to produce an estimate of the GVF. The procedure to quantify the GFV will assist in the validation of predictive tools.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference20 articles.

1. Squeeze Film Dampers,2010

2. Oil Squeeze Film Dampers for Reducing Vibration of Aircraft Gas Turbine Engines,1979

3. The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates. Part I;J. App Pol. Sci.,1962

4. The Dynamic Characteristics of O-Rings;ASME J. Mech. Des.,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3