Wavelet-Based Multiresolution Bispectral Analysis for Detection and Classification of Helicopter Drive-Shaft Problems

Author:

Hassan Mohammed A.1,Habib Michael R.2,Abul Seoud Rania A.2,Bayoumi Abdel M.3

Affiliation:

1. Electrical Engineering Department, Fayoum University, Faiyum 63514, Egypt; Centre of Excellence for Predictive Maintenance, The British University in Egypt, Cairo 11837, Egypt e-mail:

2. Electrical Engineering Department, Fayoum University, Faiyum 63514, Egypt e-mail:

3. Professor Fellow ASME Mechanical Engineering, Center for Predictive Maintenance, College of Engineering and Computing, University of South Carolina, 300 Main Street, Room A223, Columbia, SC 29208 e-mail:

Abstract

Condition monitoring and fault diagnostics in rotorcraft have significant effect on improving safety level and reducing operational and maintenance costs. In this paper, a new method is proposed for fault detection and diagnoses of AH-64D (Apache helicopter) tail rotor drive-shaft problems. The proposed method depends on decomposing signal into different frequency ranges using mother wavelet. The most informative part of the vibration signal is then determined by calculating Shannon entropy of each part. Bispectrum is calculated for this part to investigate quadratic nonlinearities in this segment. Then, search algorithm is used to extract minimum number of indicative features from the bispectrum, which are then fed to classification algorithms. In order to quantitatively evaluate the proposed method, six classification algorithms are compared against each other such as fine K-nearest neighbor (KNN), cubic KNN, quadratic discriminant analysis, linear support vector machine (SVM), Gaussian SVM, and neural network. Comparison criteria include accuracy, precision, sensitivity, F score, true alarm, recall, and error classification accuracy (ECA). The proposed method is verified using real-world vibration data collected from a dedicated AH-64D helicopter tail rotor drive train (TRDT) research test bed. The proposed algorithm proves its ability in finding minimum number of indicative features and classifying the shaft faults with superior performance.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3