Affiliation:
1. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
2. National Key Laboratory of Science and Technology on Helicopter Transmission, AECC Hunan Aviation Powerplant Research Institute, Zhuzhou, PR China
Abstract
To suppress the excessive transcritical vibration of a supercritical rotor, dry friction damper is a popular choice especially in rotorcraft and aero-engine design. In the current work, we focus on the nonlinear dynamics of asymmetrically supported supercritical rotor equipped with a dry friction damper and the influence of support asymmetry on damper’s performance. Governing equations of the rotor/damper system, which fully consider the nonlinear rub-impact and side dry friction effects, are derived. Typical results of symmetrically supported rotor/damper systems are firstly demonstrated and quantitatively compared with experimental counterparts to confirm the predicting capability of the nonlinear dry friction damper model. Afterward, influences of asymmetric direct stiffness and skew-symmetric cross-coupling stiffness are discussed. It is found that direct stiffness asymmetry deteriorates the transcritical vibration attenuation capability of the damper but reduces the width of transcritical region. For system with a severer direct stiffness asymmetry, a larger pre-tightening force is suggested to be imposed. Besides, unstable self-excited vibration induced by skew-symmetric cross-coupling stiffness is found to be well-limited by the dry friction damper within entire interested rotational speed range. Moreover, during critical speed transition, the self-excited frequency component is completely suppressed.
Funder
National Key Laboratory of Science and Technology on Helicopter Transmission
China Postdoctoral Science Foundation
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献