Research on Start-Stop Performance of Journal Bearing Based on an Isothermal and Mixed Lubrication Model With Different Acceleration and Deceleration Forms in Consideration

Author:

Gu Chunxing1,Dai Li1,Zhang Di2

Affiliation:

1. University of Shanghai for Science and Technology School of Mechanical Engineering, , Shanghai 200093 , China

2. Shanghai Jian Qiao University College of Mechanical and Electronic Engineering, , Shanghai 201306 , China

Abstract

Abstract In order to explore the influence of different acceleration and deceleration forms on the bearing performance during acceleration and deceleration, an isothermal and mixed lubrication model for journal bearings was established. In this model, the fluid mechanics was solved by the Reynolds equation with mass conservation boundary condition, while the contact mechanics was predicted by Greenwood and Tripp (GT) contact model. By the developed model and using different functions of the shaft speed, the start-stop performances of the journal-bearing system under different acceleration scenarios were analyzed. The effects of working conditions, lubrication oil temperature, and bearing structure parameters on the start-stop performance of the journal-bearing system were studied. It was found that the larger starting acceleration can help the journal-bearing system enter the hydrodynamic lubrication faster in the acceleration phase. In the deceleration phase, slow deceleration helps the journal-bearing system maintain hydrodynamic lubrication for a longer time. The higher final speed, lower lubrication oil temperature, and lower bearing clearance can make the journal-bearing system have a better performance in the start-stop process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3