Numerical simulation of the dynamic fluid–solid coupling in journal bearing with the effect of surface topography in consideration

Author:

Zhang Di12ORCID,Wei Haijun1,Gu Chunxing34ORCID

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai, China

2. College of Mechanical and Electronic Engineering, Shanghai Jianqiao University, Shanghai, China

3. School of Mechanical Engineering, University of Shanghai For Science and Technology, Shanghai, People's Republic of China

4. School of Intelligent Emergency Management, University of Shanghai for Science and Technology, Shanghai, China

Abstract

In the case of the journal-bearing system under a mixed or boundary lubrication regime, the deformation of the bearing, the flow of the lubricating medium, and the contact of the asperities should be taken into account. The lubrication problem at the journal-shaft interface is a complicated fluid–solid coupling problem. In this study, a new approach is proposed to analyze the dynamic fluid–solid coupling problem of journal bearings. The dynamic fluid–solid coupling problem is solved by the presented non-linear hybrid conjugate gradient method, which is based on the principle of pressure balance in the lubrication zone. One transient mixed lubrication model was developed to analyze the journal-bearing performance by considering the effects of skewness and kurtosis and the mass-conserving cavitation. According to the simulated results from the journal-bearing systems under the start-up condition, it can be found that the bearing performance is sensitive to the value of skewness or kurtosis and the degree of misalignment. Within a certain range, these cases with more negative skewness or lower kurtosis are conducive to decreasing friction loss and lift-off time. The developed model can be effectively used to track the performance of journal bearings.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Natural Science Foundation of Shanghai Municipality

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3