A New Support Vector Machine and Artificial Neural Networks for Prediction of Stuck Pipe in Drilling of Oil Fields

Author:

Rostami Habib1,Khaksar Manshad Abbas2

Affiliation:

1. Computer Engineering Department, School of Engineering, Persian Gulf University, Bushehr 7516913817, Iran e-mail:

2. Department of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan 6314661118, Iran e-mail:

Abstract

Stuck pipe is known to be influenced by drilling fluid properties and other parameters, such as the characteristics of rock formations. In this paper, we develop a support-vector-machine (SVM) based model to predict stuck pipe during drilling design and operations. To develop the model, we use a dataset, including stuck and nonstuck cases. In addition, we develop radial-base-function (RBF) neural network based model, using the same dataset, and compare its results with the SVM model. The results show that the performance of both models for prediction of stuck pipe does not differ significantly and both of them have highly accurate and can be used as the heart of an expert system to support drilling design and operations.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3