Optimization of experimental design techniques for modeling volumetric shrinkage in injection molding experiment using artificial intelligence

Author:

Raimi Oluwole Abiodun1ORCID

Affiliation:

1. Chonnam National University

Abstract

Abstract The study examined two types of design of experiments (DoE) methods for injection molding of a molded part. It evaluated them using an artificial neural network (ANN) and a support vector machine (SVM) via cross-validation and holdout validation. The innovative goal is to identify the most efficient and successful ways for modeling varied DoE. The influence of four processing parameters on the volumetric shrinkage of a thin polystyrene plate sample is simulated using factorial design and orthogonal Taguchi arrays design. As measured by root mean square error (RMSE), the prediction performance revealed that DoE with eight experimental points as in \({2}^{4-1}\) for fractional factorial design and L8 for orthogonal Taguchi design is particularly efficient for this modeling simulation problem. Both design methods are beneficial and efficient because orthogonal Taguchi arrays play an essential role when the accuracy of fractional factorial designs is insufficient.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3