Affiliation:
1. University of Rome Tor Vergata, Rome, Italy
2. University of Napoli Parthenope, Naples, Italy
Abstract
As a consequence of the endless price growing of oil, and oil derivate fuels, automotive industry is experiencing a concerning decreasing in sales. Accordingly, in order to meet customer needs, there is every day a greater interest in solutions for increasing engine efficiency. On the other hand the growing attention to environmental problems leads to increasingly restrictive regulations, such as European EURO 4 and EURO 5. Direct injection of gaseous fuel has emerged to be a high potential strategy to tackle both environmental and fuel economy requirements. However since the electronic gaseous injection technology is rather new for automotive applications, limited experience exists on the optimum configuration of the injection system and the combustion chamber. To facilitate the development of these applications computer models are being developed to simulate gaseous injection, air entrainment and the ensuing combustion. This paper introduces a new method for modelling the injection process of gaseous fuels in multi-dimensional simulations. The proposed model allows holding down grid requirements, thus making it compatible with the three-dimensional simulation of an internal combustion engine. The model is validated and calibrated by comparing numerical results with available experimental data. To highlight the potential applications, some numerical results of the three-dimensional combustion process in a gas engine are presented.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献