A Numerical Method for Turbomachinery Aeroelasticity

Author:

Cinnella P.1,De Palma P.2,Pascazio G.2,Napolitano M.2

Affiliation:

1. Dipartimento di Ingegneria dell’Innovazione, Universita di Lece, Via Monteroni, 73100 Lecce, Italy

2. Dipartimento di Ingegneria Meccanica e Gestionale and Centro di Eccellenza in Meccanica Computazionale, Politecnico di Bari, via Re David 200, 70125 Bari, Italy

Abstract

This work provides an accurate and efficient numerical method for turbomachinery flutter. The unsteady Euler or Reynolds-averaged Navier-Stokes equations are solved in integral form, the blade passages being discretised using a background fixed C-grid and a body-fitted C-grid moving with the blade. In the overlapping region data are exchanged between the two grids at every time step, using bilinear interpolation. The method employs Roe’s second-order-accurate flux difference splitting scheme for the inviscid fluxes, a standard second-order discretisation of the viscous terms, and a three-level backward difference formula for the time derivatives. The dual-time-stepping technique is used to evaluate the nonlinear residual at each time step. The state-of-the-art second-order accuracy of unsteady transonic flow solvers is thus carried over to flutter computations. The code is proven to be accurate and efficient by computing the 4th Aeroelastic Standard Configuration, namely, the subsonic flow through a turbine cascade with flutter instability in the first bending mode, where viscous effect are found practically negligible. Then, for the very severe 11th Aeroelastic Standard Configuration, namely, transonic flow through a turbine cascade at off-design conditions, benchmark solutions are provided for various values of the inter-blade phase angle.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Whitehead, D. S., and Newton, S. G., 1985, “A Finite Element Solution of Unsteady Two-Dimensional Transonic Flows in Cascades,” Int. J. Numer. Methods Fluids, 5, pp. 115–132.

2. Hall, K. C., 1999, “Linearized Unsteady Aerodynamics,” VKI-LS 1999-05, von Karman Institute for Fluid Dynamics.

3. Sbardella, M., and Imregun, M., 2001, “Linearized Unsteady Viscous Turbomachinery Flows Using Hybrid Grids,” ASME J. Turbomach., 123, pp. 568–582.

4. Bo¨lcs, A., and Fransson, T. H., 1986, “Aeroelasticity in Turbomachines—Comparison of Theoretical and Experimental Cascade Results,” Communication du Laboratoire de Thermique Applique´e et de Turbomachines, No. 13, EPFL, Lausanne, Switzerland.

5. Abhari, R. S., and Giles, M., 1997, “A Navier-Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping,” ASME J. Turbomach., 119, pp. 77–84.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3