Linearized Unsteady Viscous Turbomachinery Flows Using Hybrid Grids

Author:

Sbardella L.1,Imregun M.1

Affiliation:

1. Imperial College of Science, Technology, & Medicine, Mechanical Engineering Department, Exhibition Road, London SW7 2BX, United Kingdom

Abstract

The paper describes the theory and the numerical implementation of a three-dimensional finite volume scheme for the solution of the linearized, unsteady Favre-averaged Navier–Stokes equations for turbomachinery applications. A further feature is the use of mixed element grids, consisting of triangles and quadrilaterals in two dimensions, and of tetrahedra, triangular prisms, and hexahedra in three dimensions. The linearized unsteady viscous flow equations are derived by assuming small harmonic perturbations from a steady-state flow and the resulting equations are solved using a pseudo-time marching technique. Such an approach enables the same numerical algorithm to be used for both the nonlinear steady and the linearized unsteady flow computations. The important features of the work are the discretization of the flow domain via a single, unified edge-data structure for mixed element meshes, the use of a Laplacian operator, which results in a nearest neighbor stencil, and the full linearization of the Spalart–Allmaras turbulence model. Four different test cases are presented for the validation of the proposed method. The first one is a comparison against the classical subsonic flat plate cascade theory, the so-called LINSUB benchmark. The aim of the second test case is to check the computational results against the asymptotic analytical solution derived by Lighthill for an unsteady laminar flow. The third test case examines the implications of using inviscid, frozen-turbulence, and fully turbulent models when linearizing the unsteady flow over a transonic turbine blade, the so-called 11th International Standard Configuration. The final test case is a rotor/stator interaction, which not only checks the validity of the formulation for a three-dimensional example, but also highlights other issues, such as the need to linearize the wall functions. Detailed comparisons were carried out against measured steady and unsteady flow data for the last two cases and good overall agreement was obtained.

Publisher

ASME International

Subject

Mechanical Engineering

Reference39 articles.

1. Whitehead, D. S., 1987, “Classical 2D methods,” in: AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines, Unsteady Turbomachinery Aerodynamics, Vol. 1, pp. 3.1–3.30. AGARD-AG-297.

2. Verdon, J. M. , 1993, “Review of Unsteady Aerodynamics Methods for Turbomachinery Aeroelastic and Aeroacoustic Applications,” AIAA J., 31, pp. 235–250.

3. Marshall, J. G., and Imregun, M., 1996, “A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications,” J. Fluids Struct., 10, pp. 237–267.

4. Smith, S. N., 1972, “Discrete Frequency Sound Generation in Axial Flow Turbomachines,” Technical Report 3709, Cambridge University Engineering Department, Cambridge, UK.

5. Erdos, J. I., Alzner, E., and McNally, W., 1977, “Numerical Solution of Periodic Transonic Flow Through a Fan Stage,” AIAA J., 15, pp. 1559–1568.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3