Affiliation:
1. Rotating Machinery and Controls Laboratory, Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer’s Way, Charlottesville, VA 22904
Abstract
This paper extends the theory originally developed by Tichy (Tichy and Bou-Said, 1991, Hydrodynamic Lubrication and Bearing Behavior With Impulsive Loads,” STLE Tribol. Trans. 34, pp. 505–512) for impulsive loads to high reduced Reynolds number lubrication. The incompressible continuity equation and Navier-Stokes equations, including inertia terms, are simplified using an averaged velocity approach to obtain an extended form of short bearing Reynolds equation which applies to both laminar and turbulent flows. A full kinematic analysis of the short journal bearing is developed. Pressure profiles and linearized stiffness, damping and mass coefficients are calculated for different operating conditions. A time transient solution is developed. The change in the rotor displacements when subjected to unbalance forces is explored. Several comparisons between conventional Reynolds equation solutions and the extended Reynolds number form with temporal inertia effects are presented and discussed. In the specific cases considered in this paper, the primary conclusion is that the turbulence effects are significantly more important than inertia effects.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献