Effect of Centrifugal Force of Gas Film on the Load Capacity of Thrust Gas Bearing

Author:

Kim Daejong1

Affiliation:

1. Mechanical and Aerospace Engineering, The University of Texas at Arlington , 500 W. 1st Street, Arlington, TX 76001

Abstract

Abstract A modified Reynolds equation including centrifugal force of gas film was derived, and it was used to study the effect of gas film centrifugal force and associated streamline on the load capacity of both rigid and foil thrust bearings operating in hydrodynamic and hybrid modes. The thrust bearings have six pads with an outer diameter of 82 mm and an inner diameter of 47 mm with typical aper-flat geometry. The setup for the simulations is a single-acting air thrust bearing operating at various ambient pressures and isothermal temperature. Air was chosen for the gas film for the investigations, but the modified Reynolds equation can handle any general gas films through nondimensional parameter governing the centrifugal force. The simulations were performed with varying ambient pressure from 1 to 9 bar. The simulation results at different ambient pressures and temperatures are presented in forms of pressure profiles, streamlines, and bearing's load capacity. The bearings' load capacity becomes worse when the centrifugal force is considered at very low temperature, and the reduction of the load capacity grows more noticeable with the increase of the ambient pressure and the decrease of the ambient temperature. However, at higher temperature where centrifugal force is not large enough to create large leakage, the centrifugal force helps to redistribute the streamline to favorable way to increase the load capacity.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3