Re-sequencing of Design Processes With Activity Stochastic Time and Cost: An Optimization-Simulation Approach

Author:

Abdelsalam Hisham M. E.1,Bao Han P.2

Affiliation:

1. Decision Support Department, Faculty of Computers and Information, Cairo University, 5 Dr. Ahmed Zewel St, Giza 12613, Egypt

2. Department of Mechanical Engineering, Old Dominion University, Norfolk, VA 23529

Abstract

Background. By the mid-1990s, the importance of the early introduction of new products to both market share and profitability became fully understood. Thus, reducing product time-to-market became an essential requirement for continuous competition. Coupled with the fact that about 70% of the life cycle cost of a product is committed at early design phases, the motivation for developing and implementing more effective methodologies for managing the design process of new product development projects became very strong. Method of Approach. One tool that helps in understanding and analyzing such a project is the design structure matrix (DSM). This paper presents a framework that obtains an optimum sequence of project activities—presented by the DSM—that minimizes total time and cost given stochastic activity estimated time and cost. The framework interfaces a meta-heuristic optimization algorithm called simulated annealing with a commercial risk analysis software. Results. The proposed framework was applied to a design project and the results have shown a robust solution minimum was reached. Conclusions. Since much of the time and cost involved in the design process is attributable to its expensive iterative nature. The framework presented in this paper improves a design project via obtaining an optimum sequence of its activities that minimizes total time and cost.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference37 articles.

1. Pichler, R., and Smith, P., 2003, “Developing Your Products in Half the Time,” CriticalEYE, 2003, pp. 1–4.

2. Smith, P. G., and Reinertsen, D. G., 1998, “Faster to Market,” Mech. Eng. (Am. Soc. Mech. Eng.)0025-6501, December, pp. 68–70.

3. From Experience: Reaping Benefit from Speed to Market;Smith;Journal of Product Innovation Management

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3