A DSM-Based CCPM-MPL Representation Method for Project Scheduling under Rework Scenarios

Author:

Ma Guofeng1ORCID,Wu Ming1ORCID,Hao Keke1ORCID,Shang Shanshan2ORCID

Affiliation:

1. Department of Construction Management and Real Estate, Tongji University, Shanghai 200092, China

2. School of Business and Management, Shanghai International Studies University, 550 Dalian Road, Shanghai 201620, China

Abstract

Rework risks caused by information flow interactions have become a major challenge in project scheduling. To deal with this challenge, we propose a model integrating the critical chain project management method, design structure matrix method, and max-plus method. Our model uses a start-to-start relationship of activities instead of the traditional finish-to-start relationship, which also allows overlaps between activities. We improve the accuracy of the rework safety time in two ways: (1) the overall overlapping effect is taken into consideration when calculating the rework time of an activity arising from the information flow interaction of its multiple predecessors overlapped with it; (2) the rework time arising from activity overlaps, the first rework time, and the second rework time are calculated as components of the rework safety time in our model, while the last one is ignored in traditional methods. Furthermore, the accuracy of time buffers is improved based on the improved rework safety time. Finally, we design the max-plus method to generate project schedules and appropriately sized time buffers. The empirical results show that the project schedule generated by the proposed method has a higher on-time completion probability, as well as more appropriately sized project buffers.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3