Identifying Higher-Order Interactions in Wave Time-Series

Author:

Ewans Kevin1,Christou Marios2,Ilic Suzana3,Jonathan Philip4

Affiliation:

1. MetOcean Research Ltd., New Plymouth 4310, New Zealand

2. Department of Civil & Environmental Engineering, Imperial College, London SW7 2AZ, UK

3. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

4. Shell Research Ltd., UK, Mathematics & Statistics, Lancaster University, Manchester M22 0RR, UK

Abstract

Abstract Reliable design and reanalysis of coastal and offshore structures require, among other things, characterization of extreme crest elevation corresponding to long return periods. Extreme crests typically correspond to focused wave events enhanced by wave–wave interactions of different orders—third-order, four-wave interactions dominating in deep water (Janssen, P. A. E. M., 2003, “Nonlinear Four-Wave Interactions and Freak Waves,” J. Phys. Oceanogr., 33(4), pp. 863–884). Higher-order spectral (HOS) analysis can be used to identify wave–wave interactions in time-series of water surface elevation; trispectral analysis is needed to detect third-order, four-wave interactions. Four-wave interactions between Fourier components can involve interactions of the type where f1 + f2 + f3 = f4 and where f1 + f2 = f3 + f4, resulting in two definitions of the trispectrum—the T- and V-trispectrum (with corresponding tricoherences), respectively. It is shown that the T-tricoherence is capable of detecting phase-locked four-wave interactions of the type f4 = f1 + f2 + f3 when these are simulated with simple sinusoids, but such interactions were not detected in HOS model simulations and field data. It is also found that high V-tricoherence levels are detected at frequencies at which four-wave interactions of the type f1 + f2 = f3 + f4 are expected, but these may simply indicate combinations of independent pairs of Fourier components that happen to satisfy the frequency relationship. Preliminary analysis shows that using a cumulant-based trispectrum (Kravtchenko-Berejnoi, V., Lefeuvre, F., Krasnosel'skikh, V. V., and Lagoutte, D., 1995, “On the Use of Tricoherent Analysis to Detect Nonlinear Wave–Wave Interactions,” Signal Process., 42(3), pp. 291–309) may improve identification of wave–wave interactions. These results highlight that caution needs to be exercised in interpreting trispectra in terms of specific four-wave interactions occurring in sea states and further research is needed to establish whether this is in fact possible in practice.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference29 articles.

1. A Frequency Analyser Used in the Study of Ocean Waves;Barber;Nature,1946

2. The Power Spectrum Analysis of Ocean Wave Record;Pierson;Trans. Am. Geophys. Union,1952

3. The Sampling Theory of Power Spectrum Estimates;Tukey,1949

4. An Introduction to Polyspectra;Brillinger;Ann. Math. Stat.,1965

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3