Affiliation:
1. Department of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
Abstract
The effect of texture on grain boundary character distribution (GBCD) in thermomechanically processed oxygen-free high-conductivity copper has been investigated. Copper samples were cold rolled to a reduction in thickness of 50% and then annealed for 60 min in the range of 400–600°C. GBCD and texture were measured using electron backscatter diffraction. The fraction of special boundaries (Σ3, Σ9, and Σ27) varied from 59% to 71%, with the maximum in the sample annealed at 500°C. The results indicate that cold rolling provided a strong texture of brass type. It was found that the sample annealed at 500°C have texture components of cube, Goss, rotated-Goss, and Y orientations. These texture components were in relation with the formation of annealing twins and Σ3 boundaries. It was also shown that twin-induced GBCD evolution occurred by strain-induced boundary migration, multiple twinning, and conventional recrystallization. Annealing at 600°C caused full recrystallization and grain growth, showing a strong cube recrystallization texture. The grain growth was found to hinder the formation of special boundaries.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献