Affiliation:
1. Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China e-mail:
2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China e-mail:
Abstract
Electro-hydraulic load simulator (EHLS) is a typical closed-loop torque control system. It is used to simulate the load of aircraft actuator on ground hardware-in-the-loop simulation and experiments. In general, EHLS is fixed with actuator shaft together. Thus, the movement of actuator has interference torque named the surplus torque on the EHLS. The surplus torque is not only related to the velocity of the actuator movement, but also related to the frequency of actuator movement. Especially when the model of the actuator and EHLS is dissimilar, the surplus torque is obviously different on different frequencies. In order to eliminate the surplus torque for accurate load simulation, the actuator velocity input feedforword compensating method (AVIFC) is proposed in this paper. In this strategy, the actuator velocity synchronous signals are used for compensation of different frequency actuator movement to eliminate surplus torque on different frequencies. First, the mathematical model of EHLS and the actuator system is established. Based on the models, the AVIFC method is proposed. It reveals the reason that generates surplus torque on different frequencies of actuator. For verification, simulations and experiments are conducted to prove that the new strategy performs well against low, medium, and high frequency movement interference. The results show that this method can effectively suppress the surplus torque with different frequencies and improve precision of EHLS with actuator movement.
Funder
National Natural Science Foundation of China
Ministry of Science and Technology of the People's Republic of China
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献