Orthogonal Collocation Method for Solving the Diffusivity Equation: Application on Dual Porosity Reservoirs With Constant Pressure Outer Boundary

Author:

Nategh Mahshid1,Vaferi Behzad2,Riazi Masoud3

Affiliation:

1. Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71964-84334, Iran

2. Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz 74731-71987, Iran e-mails: ,

3. Enhanced Oil Recovery (EOR) Research Centre, IOR/EOR Research Institute, Shiraz University, Shiraz 71964-84334, Iran

Abstract

Fluid flow inside heterogeneous structure of dual porosity reservoirs is presented by two coupled partial differential equations (PDE). Finding an analytical solution for the diffusivity equations is tedious or even impossible in some circumstances due to the heterogeneity of dual porosity reservoirs. Therefore, in this study, orthogonal collocation method (OCM) is proposed for solving the governing equations in dual porosity reservoirs with constant pressure outer boundary. Since no analytical solution has been proposed for this system, validation is carried out by comparing the OCM-obtained results for “dual porosity reservoirs with circular no-flow outer boundary” with both exact analytical solution and real field data. Sensitivity analyses reveal that the OCM with 13 collocation points is a good candidate for prediction of pressure transient response (PTR) in dual porosity reservoirs. OCM predicts the PTR of a real field draw-down test with an absolute average relative deviation (AARD) of 0.9%. Moreover, OCM shows a good agreement with the analytical solution obtained by Laplace transform (AARD = 0.16%). It is worth noting that OCM requires a smaller computational effort. Thereafter, PTR of dual porosity reservoirs with a constant production rate in the wellbore and constant pressure outer boundary is simulated by OCM for wide ranges of operating conditions. Accuracy of OCM and its low required computational time justifies that this approximate method can be considered as a practical candidate for pressure transient analysis in dual porosity reservoirs.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3