Determination Of Fissure Volume And Block Size In Fractured Reservoirs By Type-Curve Analysis

Author:

Bourdet Dominique1,Gringarten Alain C.1

Affiliation:

1. FLOPETROL

Abstract

ABSTRACT A new type-curve is presented for analyzing wells with wellbore storage and skin in double porosity systems. This type-curve applies to damaged, acidized, and fractured wells in fissured reservoirs. In addition to the usual well and reservoir parameters (permeability, skin, wellbore storage constant and length of the fracture intersecting the well), analysis yields characteristic parameters that can provide quantitative information on the volume of fissures and the size of porous blocks in the reservoir. These, in classical methods, could only be obtained if semi-log radial flow were present at both early and late times, (thus yielding two characteristic parallel semi-log straight lines on a Horner plot), a condition that is seldom satisfied in practice. The analysis method presented in the paper is illustrated with actual field examples from several different fissured reservoirs. INTRODUCTION The large number of papers1–16 published in the last twenty years on the behavior of naturally fractured reservoirs reflects the importance to the oil industry of this type of producing formation. Although several, apparently different, theoretical models have been proposed, most practical methods for interpretation of transient tests are based on the existence of two parallel, semi-log straight lines, that is considered a characteristic feature of fissured reservoirs. Unfortunately, in most actual tests, the first semi-log straight line is usually obscured, and these methods cannot be used. As a result, only parameters characterizing the homogeneous behavior of the total system can be obtained (when conventional analysis methods are applicable), and those specific to the fracturation are usually not accessible. In this paper, we present new type-curves that can provide all the system parameters, by means of log-log analysis. These curves also permit to detect under which conditions the two parallel, semi-log straight lines are present, and can be used for interpretation. Utilization of the type-curves is illustrated on several actual field data, for which no satisfactory analysis was previously available. PREVIOUS WORK Available solutions for the behavior of fissured reservoirs are discussed in detail in Ref.16. A distinction is made there between models based on a detailed physical description of the fissured system, only suitable in relatively small scale, geotechnical type projects; and models where porous blocks and fissures are assumed uniformly distributed throughout the formation which is then treated as an â??equivalentâ?¿ system, either homogeneous or heterogeneous, as dictated by the general behavior of the actual test data. By â??equivalentâ?¿, it is meant a system whose calculated behavior is similar to the observed behavior of the real system. In this paper, we have only considered the case of reservoirs whose behavior cannot be matched with homogeneous models, and thus indicates the need to take heterogeneities into account. Among the various heterogeneous models suggested in the literature, the double porosity model is certainly the one that has attracted the most attention in the past. Until recently, however, published solutions were restricted to a â??basicâ?¿ model, (a line source or finite radius well, in a horizontal, constant thickness, reservoir of infinite lateral extent, with impermeable upper and lower boundaries), without any of the inner boundary conditions found in practice (wellbore storage, skin, fractures, etc . . .), although outer boundary conditions have been considered by some authors. As a result, these solutions were only applicable to the analysis of interference tests, or to that of data after the start of the infinite acting period in production tests.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3