Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation

Author:

Lee Sang-Wook1,Antiga Luca2,Steinman David A.3

Affiliation:

1. Biomedical Simulation Laboratory, University of Toronto, 5 King’s College Road Toronto, Toronto, ON M5S 3G8 Canada; School of Mechanical and Automotive Engineering, University of Ulsan, Ulsan 680-749, South Korea

2. Department of Bioengineering, Mario Negri Institute for Pharmacological Research, 24020 Ranica (BG), Italy

3. Biomedical Simulation Laboratory, University of Toronto, 5 King’s College Road Toronto, Toronto, ON M5S 3G8 Canada

Abstract

A variety of hemodynamic wall parameters (HWP) has been proposed over the years to quantify hemodynamic disturbances as potential predictors or indicators of vascular wall dysfunction. The aim of this study was to determine whether some of these might, for practical purposes, be considered redundant. Image-based computational fluid dynamics simulations were carried out for N=50 normal carotid bifurcations reconstructed from magnetic resonance imaging. Pairwise Spearman correlation analysis was performed for HWP quantifying wall shear stress magnitudes, spatial and temporal gradients, and harmonic contents. These were based on the spatial distributions of each HWP and, separately, the amount of the surface exposed to each HWP beyond an objectively-defined threshold. Strong and significant correlations were found among the related trio of time-averaged wall shear stress magnitude (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT). Wall shear stress spatial gradient (WSSG) was strongly and positively correlated with TAWSS. Correlations with Himburg and Friedman’s dominant harmonic (DH) parameter were found to depend on how the wall shear stress magnitude was defined in the presence of flow reversals. Many of the proposed HWP were found to provide essentially the same information about disturbed flow at the normal carotid bifurcation. RRT is recommended as a robust single metric of low and oscillating shear. On the other hand, gradient-based HWP may be of limited utility in light of possible redundancies with other HWP, and practical challenges in their measurement. Further investigations are encouraged before these findings should be extrapolated to other vascular territories.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 218 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3