A New Stabilization Algorithm for a Two-Wheeled Mobile Robot Aided by Reaction Wheel

Author:

Reza Larimi S.1,Zarafshan Payam2,Moosavian S. Ali A.3

Affiliation:

1. Advanced Robotics and Automated Systems Laboratory, Department of Mechanical Engineering, Center of Excellence in Robotics and Control, K. N. Toosi University of Technology, Tehran, Iran e-mail:

2. Assistant Professor Department of Agro-Technology, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran e-mail:

3. Professor Advanced Robotics and Automated Systems Laboratory, Department of Mechanical Engineering, Center of Excellence in Robotics and Control, K. N. Toosi University of Technology, Tehran, Iran e-mail:

Abstract

The concept of two-wheeled mobile manipulator (TWMM) has been proposed for its significant advantage due to high maneuverability particularly in confined internal spaces. However, its unbalanced structure imposes restrictions for widespread application. Note that the nonholonomic property of a TWMM makes its control a more challenging task. In this paper, a new stabilization mechanism of TWMM is presented, and a new control method based on dynamical balancing algorithm is proposed that could effectively resolve those restrictions. To this end, a reaction wheel is considered to control the position of center of gravity (COG), leading to a smoother motion of the robot manipulator. To make the robot be able to manipulate an object, a double inverted pendulum model (DIPM) is considered as a simplified model of the system. DIPM dynamics is used to identify and simplify the dynamics of TWMM and subsequently a supervisory control is employed to stabilize the robot via its COG position. This in turn improves the robustness of the proposed algorithm during manipulation maneuver of an object with unknown mass parameters. Results are compared to those of an ideal model-based algorithm that reveal the merits of the proposed control strategy.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3