Development of Advanced Laser Ignition System for Stationary Natural Gas Reciprocating Engines

Author:

Bihari Bipin1,Gupta Sreenath B.1,Sekar Raj R.1,Gingrich Jess2,Smith Jack2

Affiliation:

1. Argonne National Laboratory, Argonne, IL

2. Southwest Research Institute, San Antonio, TX

Abstract

Laser ignition is considered the prime alternative to conventional coil based ignition for improving efficiency and simultaneously reducing NOx emissions in lean-burn natural gas fired stationary reciprocating engines. In this paper, Argonne’s efforts towards the development of a viable laser ignition system are presented. The relative merits of various implementation strategies for laser based ignition are discussed. Finally, the performance improvements required for some of the components for successful field implementation are listed. Also reported are efforts to determine the relative merit of laser ignition over conventional Capacitance Discharge Ignition (CDI) ignition. Emissions and performance data of a large-bore single cylinder research engine are compared while running with laser ignition and the industry standard CDI system. It was primarily noticed that NOx emissions reduce by 50% under full load conditions with up to 65% reductions noticed under part load conditions. Also, the lean ignition limit was significantly extended and laser ignition improved combustion stability under all operating conditions. Other noticeable differences in combustion characteristics are also presented. Efforts wherein ignition was achieved while transmitting the high-power laser pulses through optical fibers showed performance improvements similar those achieved by using free-space laser ignition.

Publisher

ASMEDC

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3