Author:
Dumitrache Ciprian,Butte Carter,Yalin Azer
Abstract
AbstractThis contribution investigates a novel laser ignition method based on a dual-pulse resonant pre-ionization scheme. The first laser pulse efficiently creates initial gas ionization (seed electrons) through a 2 + 1 resonantly-enhanced multiphoton ionization (REMPI) scheme targeting molecular oxygen (λ ~ 287.6 nm). This pulse is followed by a second non-resonant near-infrared pulse (λ = 1064 nm) for energy addition into the gas via inverse bremsstrahlung absorption. The sequence of two pulses creates a laser induced plasma that exhibits high peak electron number density and temperature (ne ~ 8 × 1017 cm-3 at t = 100 ns and T ~ 8000 K at t = 10 μs, respectively). These plasma parameters are similar to those attained for typical single-pulse near-infrared laser plasmas but with the advantage of substantially lower pulse energy (by factor of ~ 2.5) in the dual-pulse REMPI case. A combustion study focusing on ignition of propane/air mixtures shows that the dual-pulse REMPI method leads to an extension of the lean flammability limit, and an increase in combustion efficiency near the lean limit, as compared to laser ignition with a single NIR pulse. The measurement results and observed gas dynamics are discussed in the context of their impact on combustion applications.
Funder
Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献