On Comparative Performance Testing of Prechamber and Open Chamber Laser Ignition

Author:

Joshi Sachin1,Loccisano Frank1,Yalin Azer P.1,Montgomery Dave T.2

Affiliation:

1. Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80521

2. Technical Center-F-515, Caterpillar Inc. P.O. Box 1875, Mossville, IL 61552

Abstract

Laser ignition is a potential ignition technology to achieve reliable lean burn ignition in high brake mean effective pressure (BMEP) internal combustion engines. The technology has the potential to increase brake thermal efficiency and reduce exhaust emissions. This submission reports on engine testing of a Caterpillar G3516C stationary natural gas fueled engine with three types of ignition approaches: (i) nonfueled electric prechamber plug with electrodes at the base of the prechamber, (ii) nonfueled laser prechamber plug with laser spark in the middle of the prechamber, and (iii) open chamber plug with laser spark in the main chamber. In the second configuration, a stock nonfueled prechamber plug was modified to incorporate a sapphire window and a focusing lens to form a laser prechamber plug. A 1064 nm Q-switched Nd:YAG laser was used to create laser sparks. For these tests, a single cylinder of the engine was retrofitted with the laser plug while the remaining cylinders were run with conventional electric ignition system at baseline ignition timing of 24 deg before top dead center (BTDC). The performances of the three plugs were compared in terms of indicated mean effective pressures (IMEP), mass burn fraction duration and coefficient of variation (COV) of IMEP, and COV of peak pressure location. Test data show comparable performance between electric and laser prechamber plugs, albeit with a lower degree of variability in engine’s performance for electric prechamber plug compared to the laser prechamber plug. The open chamber plug exhibited poorer variability in engine performance. All results are discussed in the context of prechamber and engine fluid mechanics.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3