Combined Effect of Thermal Anisotropy and Forced Convection on the Growth of Binary Alloy Equiaxed Dendrites

Author:

Jakhar Amman1,Bhattacharya Anirban2,Rath Prasenjith2,Mahapatra Swarup Kumar3

Affiliation:

1. School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Khurda 752050, Odisha, India e-mail:

2. Assistant Professor School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Khurda 752050, Odisha, India e-mail:

3. Professor School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Khurda 752050, Odisha, India e-mail:

Abstract

A numerical model has been developed to simulate the growth of an equaixed binary alloy dendrite under the combined effect of thermal anisotropy and forced convection. A semi implicit–explicit approach is used where the velocity and pressure fields are solved implicitly using the SIMPLER algorithm, while energy and species conservation equations are treated explicitly. The effect of thermal anisotropy present in the solid crystal is implemented by the addition of a departure source term in the conventional isotropic heat transfer based energy equation. The departure source represents the anisotropic part of the diffusive term in the isotropic heat transfer based energy equation. Simulations were performed to find the relative effect of convection strength and thermal anisotropy on the growth rate and morphology of a dendrite. Subsequently, parametric studies were conducted to investigate the effect of thermal anisotropy ratio, inlet flow velocity, undercooling temperature, and the relative strength of the thermal to mass diffusivity ratio by analyzing the variation of the equilibrium tip velocity of the top and left arms, the arm length ratio (ALR), and the equivalent grain radius. Based on simulations, a chart has been developed, which demarcates different regimes in which convection or thermal anisotropy is the most dominant factor influencing the dendrite growth rate. The model has also been extended to study the growth of multiple dendrites with random distribution and orientation. This can be useful for the simulation of microstructure evolution under the combined effect of convection and thermal anisotropy.

Funder

Council of Scientific and Industrial Research, India

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3